Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Mem. Inst. Oswaldo Cruz ; 104(3): 486-491, May 2009. ilus
Article in English | LILACS | ID: lil-517022

ABSTRACT

Paracoccidioides brasiliensis causes infection through inhalation by the host of airborne propagules from the mycelium phase of the fungus. This fungus reaches the lungs, differentiates into the yeast form and is then disseminated to virtually all parts of the body. Here we review the identification of differentially-expressed genes in host-interaction conditions. These genes were identified by analyzing expressed sequence tags (ESTs) from P. brasiliensis cDNA libraries. The P. brasiliensis was recovered from infected mouse liver as well as from fungal yeast cells incubated in human blood and plasma, mimicking fungal dissemination to organs and tissues and sites of infection with inflammation, respectively. In addition, ESTs from a cDNA library of P. brasiliensis mycelium undergoing the transition to yeast were previously analyzed. Together, these studies reveal significant changes in the expression of a number of genes of potential importance in the host-fungus interaction. In addition, the unique and divergent representation of transcripts when the cDNA libraries are compared suggests differential gene expression in response to specific niches in the host. This analysis of gene expression patterns provides details about host-pathogen interactions and peculiarities of sites within the host.


Subject(s)
Animals , Humans , Mice , Expressed Sequence Tags , Gene Expression Profiling , Gene Expression Regulation, Fungal/genetics , Host-Pathogen Interactions/genetics , Paracoccidioides/genetics , DNA, Complementary/analysis , Gene Library , Liver/microbiology , Paracoccidioides/pathogenicity
2.
Genet. mol. biol ; 30(1,suppl): 219-224, 2007. tab
Article in English | LILACS | ID: lil-450437

ABSTRACT

Mycoplasma synoviae and Mycoplasma hyopneumoniae are wall-less eubacteria belonging to the class of Mollicutes. These prokaryotes have a reduced genome size and reduced biosynthetic machinery. They cause great losses in animal production. M. synoviae is responsible for an upper respiratory tract disease of chickens and turkeys. M. hyopneumoniae is the causative agent of enzootic pneumonia in pigs. The complete genomes of these organisms showed 17 ORFs encoding kinases in M. synoviae and 15 in each of the M. hyopneumoniae strain. Four kinase genes were restricted to the avian pathogen while three were specific to the pig pathogen when compared to each other. All deduced kinases found in the non pathogenic strain (J[ATCC25934]) were also found in the pathogenic M. hyopneumoniae strain. The enzymes were classified in nine families composing five fold groups.

SELECTION OF CITATIONS
SEARCH DETAIL